



## **Sunset Beach Groin Study**

APTIM: James Austin, P.E., Douglas Mann, P.E., BC.CE.,

Hithaishi Hewageegana, Ph.D.

Pinellas County: John Bishop, Ph.D.,

**Zachary Westfall** 



## **PROJECT LOCATION**







## **GROIN HISTORY**

- Constructed in 1976
- Part of the Pinellas County Beach Erosion Control Project (USACE, 1968)







## SUNSET BEACH GROIN TODAY





## RECENT NOURISHMENT HISTORY

### Treasure Island

- USACE Project
  - 2018: 239,000 CY between R-136A to R-142
  - Current Period of participation ends in 2031
  - Feasibility study in progress to nourish TI over next
     50 years
  - Pinellas County is the non-federal partner
- Countywide Emergency Dune Project
  - Winter 2023/24: 32,000 CY between R-137 to R-142





## RECENT NOURISHMENT HISTORY CONT.

- Reconstruction of dune at Sunset Beach following 2024 hurricane season
- Upcoming Pinellas County Beach Nourishment Project
  - Emergency permitting is underway
  - 364,000 CY on TI





## **GROIN OBSERVATIONS**

- Composed of granite armor stone and concrete sheet pile
- Approximately 270 feet of exposed groin
- Slopes into water and buried on the seaward end







## SEDIMENT TRANSPORTS

- Sediment moves north to south through the study area from wind driven waves and currents
- Majority of sediment transport at Sunset Beach assumed to occur at MHW line
- Small amount of transport occurs in the bar



## **BEACH OBSERVATIONS**







# BEACH OBSERVATIONS CONT.





## **ENGINEERING CHALLENGES**

- Structure is trapping sediment on the north side causing erosion to the south
- South side erosion is severe
- Beach nourishment alone has been inadequate





## **NUMERICAL MODELING**

### Of Selected Engineering Alternatives

- Delft-3D numerical model
- Calibrated and Validated using measured wave climates and sediment transport
- The model's greatest strength is in comparison between different cases



## WIND AND WAVE DATA







## MODEL CALIBRATION

### **ADCP Deployment**

- Two wave gauges were deployed by APTIM divers to measure currents and wave heights.
  - Offshore wave gauge depth = 32 ft
  - Onshore wave gauge depth = 15 ft







### **ALTERNATIVES**

### 8 Total Alternatives

#### **Alternative 1**

USACE Equilibrated Advanced Nourishment Template

#### **Alternative 2**

Cut a 16' Weir

#### **Alternative 3**

- Cut a 33' Weir

#### **Alternative 4**

Shorten the Groin



### **ALTERNATIVES CONT.**

#### **Alternative 5**

Add a Tapered Groin Field

#### **Alternative 5.1**

Add a Long Tapered Groin Field

#### **Alternative 6**

Update Advance Nourishment Volumes

#### **Alternative 7**

Nourishment of 10 CY/FT after 3 Years



## COMPARISON OF ALTERNATIVES

### Step 01

 Simulate coastal morphodynamics for a period of 5 years using the reduced wave climate

### Step 02

- Calculate sediment volume change in cells along the beach
- $\Delta vol = bed level at the end of 5 years Initial bed level$

### Step 03

- Compute  $\triangle vol$  per year per alongshore foot
- $(\Delta vol | year | ft)$

### Step 04

Compute the volume change for all alternatives





## **ALTERNATIVE 01: NO ACTION**

### **USACE** Nourishment Template









## ALTERNATIVE 2: CUT A 16' WEIR CENTERED ON THE MHWL









## ALTERNATIVE 3: CUT A 33' WEIR CENTERED ON THE MHW LINE









## ALTERNATIVE 4: SHORTEN THE GROIN









## ALTERNATIVE 5: ADD A TAPERED GROIN FIELD









## ALTERNATIVE 5.1: ADD A TAPERED LONGER GROIN FIELD









## ALTERNATIVE 6: UPDATE ADVANCE NOURISHMENT VOLUMES











## ALTERNATIVE 8: NOURISHMENT OF 10 CUBIC YARDS/FT AFTER 3 YEARS









### RECOMMENDATIONS

### **Increase Advanced Nourishment**

- Increase the USACE nourishment to
- 53 CY/FT
- Compatible with federal shore protection design
- Can be implemented with federal project





### **RECOMMENDATIONS**

### **Interim Nourishment**

- Perform interim truck haul nourishment of approximately 38,000 cy after 3 years
- On as needed basis
- Compatible with federal shore protection design
- Funding likely limited to State and local sources





### RECOMMENDATIONS

### **Tapered Groin Field**

- Construct a tapered groin field south of the existing groin
- May be difficult to incorporate into the federal nourishment
- Further coordination with stakeholders is recommended





### CONCLUSIONS

## Two beach nourishment modifications and a groin field addition yield incremental improvements

- Increase the advanced nourishment to 53 CY/FT
- Perform interim truck haul nourishments of approximately 38,000 cy every 3 years
- Construct a tapered groin field



## **QUESTIONS?**



James Austin, P.E. James.austin@aptim.com 904.252.7401



## **APPENDIX**

